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Abstract. Realistically modelling behaviour and interaction of hetero-
geneous road users (pedestrians and vehicles) in mixed-traffic zones (a.k.a.
shared spaces) is challenging. The dynamic nature of the environment,
heterogeneity of transport modes, and the absence of classical traffic
rules make realistic microscopic traffic simulation hard problems. Exist-
ing multi-agent-based simulations of shared spaces largely use an expert-
based approach, combining a symbolic (e.g. rule-based) modelling and
reasoning paradigm (e.g. using BDI representations of beliefs and plans)
with the hand-crafted encoding of the actual decision logic. More re-
cently, deep learning (DL) models are largely used to derive and pre-
dict trajectories based on e.g. video data. In-depth studies comparing
these two kinds of approaches are missing. In this work, we propose an
expert-based model called GSFM that combines Social Force Model and
Game theory and a DL model called LSTM-DBSCAN that manipulates
Long Short-Term Memories and density-based clustering for multi-agent
trajectory prediction. We create a common framework to run these two
models in parallel to guarantee a fair comparison. Real-world mixed traf-
fic data from shared spaces of different layout are used to calibrate/train
and evaluate the models. The empirical results imply that both models
can generate realistic predictions, but they differ in the way of handling
collisions and mimicking heterogeneous behaviour. Via a thorough study,
we draw the conclusion of their respective strengths and weaknesses.
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1 Introduction

In comparison to conventional traffic design where road resources are allocated
to road users (agents) by time or space segregation, shared space largely removes
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road signs, signals, and markings, forcing direct interaction between mixed traffic
participants (e.g. cars, bikes, pedestrians), guided by informal social protocols
and negotiation. This concept was first introduced by Monderman in the 1970s
[9]. Shared spaces nowadays can be found in urban areas of many European
cities; examples are the Laweiplein intersection in the Dutch town Drachten,
Skvallertorget in Norrköping, and Kensington High Street in London [14].

The absence of explicit traffic rules and thereby caused vagueness make it
critical to investigate safety issues, especially regarding vulnerable road users (i.e.
pedestrians) and traffic efficiency of shared spaces [14]. The foreseeable advent of
autonomous driving also raises the need for automated safety systems based on
the intent recognition of other road users [11]. However, understanding how road
users behave and predicting their actions is far from trivial as these actions are
a result of complex decision-making processes from heterogeneous road users.

There is a considerable body of research on microscopic models aimed at
tackling these challenges. In particular, we can distinguish two classes of method-
ologies: the so-called expert-based approaches [23, 15, 4, 26, 32, 29, 18] and data-
driven approaches [2, 21, 17, 27, 13, 7, 8]. Expert-based approaches involve human
designers to craft explicit decision rules and corresponding reasoning mechanism
to tackle the modelling problem. For example, in the Social Force Model (SFM)
[15], the rules of physical dynamics are used to mimic pedestrian movement be-
haviour in crowded space. Game theory has been used in interaction modelling
e.g., users negotiating the right-of-way [29, 18, 5]. However, the requirement of
human intervention makes it difficult to scale these models for large or new prob-
lems. On the other hand, data-driven modelling approaches can be trained by
processing the data extracted from real-world situations and deriving a complex
neural network structure with associated parameters or weights optimised via
training [20]. Examples are e.g. Social-LSTM [2] and Social-GAN [13]. These
models are often black boxes, making them hard to understand and explain for
humans; The human modeller’s intention to guide the models to capture specific
desired patterns is difficult to support [16]. Up to now, there is no easy way to
interpret the latent features used by a DL model, especially when the structure
is of very high dimensionality. Thus, a lack of reliable control of the model may
lead to faulty or counter-intuitive behaviour. Besides, computational cost can be
a bottleneck for DL-based models [28].

However, it is not easy to fairly compare the expert-based and DL approaches
in modelling and predicting mixed traffic trajectories. Firstly, it is difficult to
create a common framework that both models can share for a fair comparison.
Moreover, they may have different criteria in terms of performance. As an ex-
ample, expert approaches focus on generating realistic trajectories for agents
in simulation, while data-driven approaches focus on predicting trajectories as
close as possible to the real trajectories, the so-called ground truth. Hence, the
input and output of these approaches are often different.

To our knowledge, there are no studies that compare expert-based and DL ap-
proaches for microscopically modelling complex socio-technical systems, namely,
shared spaces. Our contributions are summarised below:
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– We pursue two models: an expert-based (GSFM, combining a game-theoretic
and physics-based model) and a DL model (LSTM-DBSCAN, Long Short-
Term Memories with Density-Based Spatial Clustering of Applications with
Noise, [10]) .

– We create a common framework for a fair comparison. These two models
take the same data as input and generate predictions in the same format.

– The accuracy (in terms of realistic behaviour) of these two models is tested on
real-world shared-space scenarios using the same evaluation metrics. Their
strengths and weaknesses are experimentally compared and analysed.

2 Methodology

2.1 Problem Formulation

The prediction task is to generate realistic and collision-free future trajectories of
the vehicle and pedestrian agents in shared spaces. As preparation for empirical
data, all the trajectories with discrete time steps of 0.5 seconds e.g. (xti, y

t
i) ∈ R2

on a 2D plane are received from video sequences recorded by static cameras,
where x and y are pixel coordinates for the given video, which can be easily
converted to meters using the given scale, i stands for agent ID and t for time
step. The time steps in observation are {1, · · · k} and the time steps in prediction
are {k+1, · · · ,m}. Accordingly, the visible trajectories for N agents are denoted

as X = X1, X2, ..., Xn, where Xi =
∑k
t=1(xti, y

t
i) and i ∈ N . The prediction

of the future trajectories are Ŷ = Ŷ1, Ŷ2, ..., Ŷn, respectively. The task is to
predict each agent’s location at prediction time steps based on the locations at
observation time steps for both DL and expert-based models. Thus, the objective
is to minimise L(Y, Ŷ), where Ŷ = f(X) and Y is the ground truth, f( .) stands
for the prediction models, and L(., .) the loss function.

2.2 Game-Theoretic Social Force Model

We pursue an expert-based approach, called Game-Theoretic Social Force Model
(GSFM) [18]. In GSFM, the movement of each agent is modelled in three mod-
ules: trajectory planning, force-based modelling, and game-theoretic decision-
making. Each module has different roles to perform. GSFM build on a BDI
(Belief, Desire, Intention) platform, LightJason [3], to design and explain the
control flow among the modules. The BDI controller acts as the brain of the
agent to perceive the environment and activate one of these modules based on
the situation. Each module triggers the controller on the completion of their
respective task(s). Fig. 1 visualises the overall structure of the GSFM model.

The trajectory planning module computes free-flow trajectories for each agent
by considering static obstacles like boundaries, or trees in the shared space.

The force-based modelling and game-theoretic decision modules are respon-
sible for modelling interactions among agents. In GSFM, these interactions are
classified into two categories based on the observation of the video data and on
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the classification of road users’ behaviour given by Helbing et al.[15]: simple in-
teraction (percept → act) and complex interaction (percept → choose an action
among many alternatives → act).

The force-based module handles simple interactions. It uses the classical SFM
to capture the driving force of each agent towards their destination (Do

i ), the

Fig. 1: Trajectory prediction in shared spaces
using GSFM. Here, AF means added force
to classical SFM and A/D indicates activa-
tion/deactivation of a module in GSFM.

repulsive force from static ob-
stacle (IiW ) and from other
pedestrian (Iij), and extends
SFM to capture car fol-
lowing interaction (I following)
and pedestrian-to-vehicle re-
active interaction (Istopping).
Istopping happens only if pedes-
trian(s) have already initiated
walking in front to the vehi-
cle, so the vehicle decelerates
to let the pedestrian(s) pass.

The game-theoretic mod-
ule is responsible for han-
dling complex interactions i.e.
pedestrian(s)-to-car(s) or car-
to-car interaction. A sequen-
tial leader-follower game, a.k.a.
Stackelberg game is used to
handle these interactions. In
such a game, both leader and
follower players try to max-
imise their utility: the leader
player chooses a strategy first
by considering all possible reactions of follower players and the followers react
based on the chosen strategy of the leader [29]. The sub-game perfect Nash equi-
librium (SPNE) is applied to find the optimal strategy pair, denoted by Eq. (1).

SPNE = {sl ∈ Sl|max(ul(sl, Bsf (sl)))}, ∀sl ∈ Sl. (1)

Bsf (sl) = {sf ∈ Sf |max(uf (sf |sl))}. (2)

The equation (2) is the best answer from the follower. Here, sl, sf , ul, uf and
Sl, Sf are the leader’s and followers’ strategies, utilities regarding the respective
strategies and their strategy sets respectively. In GSFM, Continue, Decelerate
and Deviate (pedestrian only) are the possible strategies for agents. Each com-
plex interaction is resolved by playing an individual Stackelberg game and the
games are not dependent on each other. For any game, the number of leaders
is set to one and followers to one or more, and the faster agent (i.e. car) is
chosen as the leader. If any complex situation involves more than one cars e.g,
pedestrian(s)-to-cars interaction, then the one who detects the conflict first is
set as leader. The details of these modules e.g. payoff estimation or interaction
modelling, and categorisation and recognition of interaction is given in [18].
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Although these modules take control alternatively, at the start of the simu-
lation, GSFM maintains a hierarchy among its modules: it starts with the tra-
jectory planning with the assumption that agents plan their trajectory before
starting walking/driving physically. Once agent gets there trajectory, force-based
module is activated to execute their physical movement. Conflict recognition is
performed at regular intervals. Based on the situation context (i.e. simple or com-
plex conflict), the BDI controller activates either force-based or game module to
decide on strategies. Once the strategies are decided, force-based module is acti-
vated again (if not activated already) to execute them. The BDI controller also
prioritises the decision taken by these modules i.e. Igame takes precedence over
decision of other modules, except for Istopping, with the premise that complex
interaction e.g. car-to-pedestrian is more critical than pedestrian-to-pedestrian
or car following interaction.

To sum up, the process of GSFM for predicting the movement behaviour of
any target agent i in any time step t is presented in Eq. (3)–(5). Here, i, j, W , Zi,
Xt
i , and Y t+∆t depict the target agent, competitive pedestrian, boundary, input

to the model, the agent’s position in current and next time step respectively.
The input profile Zi is derived from the observation of Xi, which contains start,
goal, speed profile of i, and minimum distance acceptance of i with others. The
goal of i is estimated by using the heading in the last observed position and
average speed over the observed time steps.

Pedestrian:
d
−→
vt i
dt

=
(−→
Do
i +Σ

−→
I iW +Σ

−→
I ij

)
or
−→
I game, (3)

Car:
d
−→
vt i
dt

=
−→
Do
i or
−→
I following or

−→
I game or

−→
I stopping, (4)

Ŷ t+∆ti = f(Zi, (
d
−→
vt i
dt

+Xt
i )). (5)

2.3 LSTM with DBSCAN

We pursue a DL model, called Long Short-Term Memories with Density-Based
Spatial Clustering of Applications with Noise (LSTM-DBSCAN). For a target
agent i, f(Xi) is LSTM-DBSCAN that takes Xi as input and outputs Ŷi. The
LSTM-DBSCAN contains two modules: a mapping module for interaction pool-
ing and an LSTM module for motion planning, see Fig. 2.

The mapping module is used for pooling the interactions between the tar-
get agent and other neighbourhood agents at each time step. It follows the idea
of repulsive force in SFM [15] to map the collision probability based on safety
distance maintained by the target and neighbourhood agents, denoted by prob-
ability density mapping (PDM). Safety distance d (see Fig. 2) is measured from
the approximate mass points from the target agent to the neighbourhood agent.
If two agents approach each other, PDM increases exponentially. In addition, we
follow the same idea as [8] to extend safety distance with buffers for pedestrian
personal space [12] and car geometry, denoted by the egg shapes with approxi-
mate radius (r or R) in Fig. 2. Radius are extracted from real-world interactions
with the differentiation of road users’ transport mode.
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Fig. 2: The structure of LSTM-DBSCAN for target agent i. ⊗ stands for the con-
catenation of the output of the mapping module and the target agent’s position
at each time step.

However, short distance does not necessarily indicate high collision probabil-
ity. Pedestrians from one group tend to walk at the same speed and maintain
a certain distance, to synchronise their speed and distance for communication
and visibility between each other [30, 26]. Therefore, inside the mapping module,
a DBSCAN cluster is incorporated to detect pedestrian groups, so as to cancel
out erroneous collision indication and relax on close interactions for group mem-
bers. At each time step in the observation time, present agents are clustered.
The minimum number of points (MinPts) is set to two as the smallest group
(cluster) only contains two agents. The maximum Euclidean distance (ε) from
neighbourhood point to the core points in a DBSCAN cluster is set to one meter.
A neighbourhood agent is defined as a group member for the target agent if they
co-exist in the same cluster over 90 % of the observed time steps. Both ε and
the overlap ratio of time steps are decided from the hyper-parameter searching
in [6]. During clustering, PDM is reset to zero for group members.

The LSTM module is used for motion planning, which takes the target agent’s
coordinates and the interactions with neighbourhood agents using PDM as input
at each observed time step. In prediction time, similar to Social-LSTM [2], the
LSTM module uses the encoded information from observed time steps to predict
the distribution of the next positions. While, our DL model differs from Social-
LSTM by semantically quantifying all the neighbourhood agents’ impact using
a collision probability, instead of occupancy grid within a predefined interactive
zone using binary values. It also differentiates the impact of group members and
non-group members on the target agent from a DBSCAN cluster.

In short, Eq. (6) describes the prediction process for the target agent i. For
simplicity, the time step is omitted in the equation. f(., .) stands for LSTM, φ( .)
for PDM, and ψ(., .) for DBSCAN.

Ŷi∈N = f(Xi∈N , φ(ψ(Xi∈N , Xj∈N,j 6=i))) (6)
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3 Data Sets and Evaluation Metrics

3.1 Data Sets

To evaluate the performance of the proposed two models, we use two data sets
with mixed traffic trajectories extracted from shared spaces of different layout,
namely, the Hamburg Bergedorf station data set (HBS) from Germany [24] and
the DUT data set from the campus of Dalian University of Technology in China
[31]. The layout of HBS is a street with pedestrian crossing from both sides.
The DUT data set has 11 clips recorded in a roundabout and 17 clips recorded
in an intersection. The clip from HBS contains dynamic pedestrians-to-vehicles
interactions. Whereas, the clips from DUT have less vehicles, but more vehicles-
to-crowd interactions [31]. Table 1 summarises the statistics for each data set.
The first 1200 time steps of the HBS data set and 12 clips (8 from the intersection
and 4 from the roundabout) from the DUT data set are used for extracting
interaction scenarios for evaluation. In total, we manually extracted 89 scenarios
that involve interactions between pedestrians and vehicles: 67 scenarios from
HBS and 22 from DUT. Please note that due to the short length of clips from
DUT, scenarios extracted from DUT are shorter than the ones from HBS. The
rest of the two data sets are used for calibrating the expert-based model GSFM,
and training the DL model LSTM-DBSCAN. There is no overlap between the
evaluation and training data.

Table 1: Statistics for each data set

Data set #Time steps Time-step duration #Ped #Veh Layout description

HBS 3620 0.5 seconds 1115 338 1 clip in a street

DUT 648 0.5 seconds 1767 69
11 clips in a roundabout
17 clips in an intersection

(a) HBS (b) DUT roundbout (c) DUT intersection

Fig. 3: Mixed trajectories from shared spaces of different layout

3.2 Evaluation Metrics

To evaluate the performance of GSFM and LSTM-BDSCAN, we use displace-
ment (Euclidean and Hausdorff distance) and heading errors as metrics. As com-
monly used in other works [2, 13], the average Euclidean distance error (ADE)
measures the aligned error for each step and we report the value averaged over
the path. For the accumulated error, we used Hausdorff distance to measure the
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largest distance from the set of the predicted positions of a trajectory to the set
of true positions [22]. In most cases, the displacement error accumulates with
the increment of time steps. The Hausdorff distance error is very similar to the
displacement error for the final position. Heading (from the previous position to
the next position) error measures the pairwise absolute heading difference over
all positions between the predicted and ground truth trajectories.

Due to the stochastic characteristics of human movement behaviour, different
road users may behave in different ways in a given situation [19]. In this regard,
it is very difficult to quantify which way of behaving is better than the other. The
quantitative evaluation metrics alone may not be sufficient to demonstrate the
feasibility of a trajectory prediction model. Therefore, we perform case studies
to analyse how both proposed models handle different real-world scenarios.

4 Experimental Results

GSFM is implemented using a BDI multi-agent framework, LightJason [3]. LSTM-
DBSCAN is implemented using tensorflow [1] framework. The LSTM units have
a size of 128 and one vertical layer. It is trained using RMSProp optimised with
a learning rate of 0.003 and batch size of 16 for 300 epochs. The observation
sequence length is set to six time steps and the prediction sequence length varies
with a minimum length of six time steps. Both GSFM and LSTM-DBSCAN are
tested on real-world scenarios lasting different length of time steps, unlike [2, 13,
27] that predict trajectories of a fixed length of time steps.

4.1 Quantitative Results for Individual Models

Fig. 4 shows the comparison among the ground truth trajectories and the tra-
jectory predictions by LSTM-DBSCAN and GSFM along time horizon on HBS
and DUT, measured by Euclidean and Hausdorff distance, and heading error.

In general, as the time step increases, the performance of both models de-
creases on both data sets, as the uncertainty increases further into the future.
Fig. 4a shows that LSTM-DBSCAN performs better in short-sequence predic-
tion (approximately 25 time-steps) than GSFM by all measurements for the HBS
data set, which contains many long-sequence interactions. However, the perfor-
mance of LSTM-DBSCAN degrades faster than GSFM with the increment of
time steps.

From Fig. 4b, the performance for LSTM-DBSCAN on DUT is significantly
better than GSFM regarding all the evaluation metrics. As mentioned before
(see Section 3.1), the scenarios from DUT are shorter and more complicated due
to the high density of traffic in the intersection and the roundabout than HBS.
Both of the proposed models have a limited capacity to deal with dense traffic.

4.2 Qualitative Results for Individual Models

Fig. 5 shows the predictions made by GSFM and LSTM-DBSCAN in different
scenarios. In most scenarios denoted in the sub-figures, both GSFM and LSTM-
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Fig. 4: The performance of GSFM and GSFM-w-LSTM on different data sets.

DBSCAN generate feasible trajectories in interactions within a small number of
road users from the HBS data set. Whereas, both models have limited perfor-
mance in dealing with dense traffic in the DUT data set.

Based on the visualisation, the prediction from the GSFM model overlaps
the ground truth well and outperforms the LSTM-DBSCAN model when the
trajectories have a constant heading direction (see Fig. 5a).

However, when road users change their heading direction, GSFM may have
difficulty mimicking this behaviour. As can be seen in Fig. 5b, the trajectories
generated by GSFM are straight forward and homogeneous as the model only
specifies a limited number of behaviour patterns based on the assumption of
relatively fixed speed (i.e. a Gaussian distribution of speed). Else-ways, LSTM-
DBSCAN can automatically capture both the speed and orientation attributes
of each road user based on a short observation time.

Moreover, GSFM and LSTM-DBSCAN handle conflicts differently. GSFM
deals with conflicts explicitly either based on the social forces, where the repul-
sive force increases exponentially when two road users come closer [15] or by
game playing to negotiate on the priority over road spaces. In contrast, LSTM-
DBSCAN learns collision avoidance based on the training data with probability
density mapping automatically. They may generate different negotiating results
even facing the same interactions. For example, in Fig. 5c, both GSFM and
LSTM-DBSCAN predict that both pedestrians crossing the street before the up-
coming vehicle, although LSTM-DBSCAN predicts a more aggressive behaviour
for the vehicle which results in a near collision with the crossing pedestrians.

In Fig 5d, both GSFM and LSTM-DBSCAN do not optimally predict the
trajectory for the vehicle approaching a large number of pedestrians. In GSFM,
the vehicle decelerates and some of the pedestrians accelerate for collision avoid-
ance. Whereas, LSTM-DBSCAN generates a very unfeasible trajectory for the
vehicle, which results in pedestrians deviating from the upcoming vehicle.



10 H. Cheng et al.

(a) HBS scenario 1 (b) HBS scenario 2 (c) HBS scenario 3 (d) DUT scenario 1

Fig. 5: Comparison of the predictions by GSFM and LSTM-DBSCAN. Ground
truth trajectories are in black colour and predicted trajectories are colour-coded.
Vehicles are travelling in either diagonal or slightly horizontal directions. The
arrows indicate the moving directions of pedestrians and vehicles.

4.3 Pros and Cons of GSFM and LSTM-DBSCAN

Based on the empirical results, we summarise the strengths and weaknesses of
the GSFM and LSTM-DBSCAN models in Table 2.

Table 2: Pros and cons of GSFM and LSTM-DBSCAN

Model GSFM LSTM-DBSCAN

Pros

transparent, explainable,
collision-free trajectories,
no need for labelled data,
easy to control

less domain knowledge,
not based on rules,
good short-term predictions,
realistic predictions in simple scenarios

Cons

domain knowledge,
complicated rules,
homogeneous predictions,
inflexible in scaled problems,
limited in dense traffic

not transparent, not explainable,
collision-free trajectories not guaranteed,
computationally inefficient,
might be over-fitted, limited in dense traffic,
require labelled data, hard to control

Some pioneer studies [25, 16] indicate that a hybrid model can be used to
hoard the collective advantages of both kinds of approaches. Therefore, in future,
we consider to combine the expert-based and DL approaches to model collision-
free, explainable, and heterogeneous trajectories of agents.

5 Conclusion and Future Work

In this study, we propose an expert-based model and a deep learning model for
mixed traffic trajectory modelling and prediction in shared spaces of different
layout. Both of the two models take the same input data for a fair comparison.
Their performance is evaluated on real-world shared-space scenarios, such as
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interactions between pedestrians and vehicles. In most cases, both models can
predict realistic trajectories for mixed traffic agents. The expert-based model,
using Social Force Model and Game theory, predicts collision-free trajectories.
While the predictions tend to be homogeneous. The deep learning model that
manipulates Long Short-Term Memories and density clustering predicts accu-
rate short-term trajectories. However, its performance decreases significantly for
longer-term prediction and it may generate (near) collision predictions. Both
models have limited performance in coping with a large number of agents.

To improve the performance and robustness of the individual models, more
open-source data sets of shared spaces will be used for training and evaluation.
We will build a hybrid model such as by combining the collision-avoidance mech-
anism of the expert model with the motion planning techniques of the DL model,
to predict collision-free and realistic trajectories in mixed traffic environments.
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