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Abstract. We compare synthetic population-based travel demand mod-
eling with the state of the art travel demand models used by metropolitan
planning offices in the United States. Our comparison of the models for
three US cities shows that synthetic population-based models match the
state of the art models closely for the temporal trip distributions and
the spatial distribution of destinations. The advantages of the synthetic
population-based method are that it provides greater spatial resolution,
can be generalized to any region, and can be used for studying correla-
tions with demographics and activity types, which are useful for modeling
the effects of policy changes.
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1 Introduction

Travel demand modeling refers to modeling population movements within a re-
gion, typically over the course of a fixed time period such as day or a week.
Mobility depends on a number of factors, such as demographics, transportation
infrastructure, the build environment, and more.

Transportation planning and demand modeling are required to receive federal
transportation funds for larger urban areas in the U.S. [9]. Based the most recent
regulation, the Safe, Accountable, Flexible, Efficient Transportation Equity Act:
A Legacy for Users (SAFETEA-LU), transportation plans need to address many
requirements, such as air quality issues, multimodal planning, better manage the
existing system, expand public input, and financial requirements [15]. Trans-
portation demand models play very important roles in forecasting and assessing
whether the proposed transportation planning alternatives can help the region
to meet the corresponding requirements. Therefore, all Metropolitan Planning
Organizations (MPOs) for areas with population more than 50,000 have to de-
velop, implement, and calibrate local travel demand models to evaluate a broad
range of alternatives [9].
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This has some limitations. First, MPOs don’t do this planning for smaller re-
gions. Thus, the coverage doesn’t extend over the whole country. Second, there is
a lack of spatial refinement in existing models, as all trips are attributed to Traf-
fic Analysis Zones (TAZs), as we explain in the next section. Third, these models
are not applicable in abnormal situations, such as mobility during disasters.

To address these limitations, we are exploring the use of synthetic popula-
tions [2, 20], which provide a disaggregated model of the population, their ac-
tivity schedules, and activity locations. The synthetic population approach to
generating travel demand is described in Section 3.

In the present work, we compare the synthetic population-derived travel de-
mand with the travel demand generated by two models used by MPOs, for three
US cities. The goals are to see how closely the models match, what the differences
are, and where the synthetic population approach might be improved. Once the
approach is validated, we can use it to do travel demand modeling for all regions
in the US.

2 State of the Art in Mobility Modeling

Currently, a majority of MPOs in the United States adopt two genres of travel
demand models, namely the conventional four-step travel demand model and the
latest activity-based travel model. The four-step model is a widely adopted trans-
portation demand forecast framework that can be dated back to the 1950s [19].
The model adopts four specific steps, including trip generation, trip distribu-
tion, mode choice, and trip assignment, to forecast future travel demand given
changes in the spatial distribution in employment and population and perfor-
mance of a transportation system within a region. The first trip generation step
estimates the number of produced and attracted trips for each Traffic Analy-
sis Zone (TAZ). The trip distribution step connects trip origins to destinations,
which results in a person trip Origin-Destination (OD) matrix. The mode choice
step divides the person trip OD matrix by travel mode, such as passenger ve-
hicles, transit, etc., and generates mode-specific OD matrices for vehicle trips
by the time of the day. The last trip assignment component forecasts the route
for trips. The unit of analysis for the four-step model is zone-level trips. Thus,
the model is not sensitive to demand and supply policies, as individual decision
making is barely incorporated in the model [9].

The activity-based model advances the four-step model by forecasting travel
demand at a more refined unit of analysis [5]. The activity-based model is typi-
cally developed at a disaggregated person level, enabling the model to evaluate
possible changes in travel behavior and system performances across policy sce-
narios. However, the modeled geographic unit is similar to the four-step model,
which is typically TAZs. In other words, all activities, trip origins, and destina-
tions are assigned to TAZ centroids. Some MPOs tend to adopt more refined TAZ
boundaries in the activity-based model compared with the four-step model [4].
The activity-based models, however, are more data and computational resource-
consuming compared with the four-step model. Thus, only a limited number of
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MPOs have adopted the activity-based model [10]. Though several MPOs have
started to migrate from the four-step model to the activity-based model, the
four-step model remains the most commonly used travel demand model in the
U.S [10].

Both of the aforementioned demand forecasting frameworks were developed
for regional planning purposes. In those scenarios, a TAZ-level model is consid-
ered sufficient for planning-related decision making. However, the model fails to
support policy making at refined spatial scales to address emerging transporta-
tion problems (e.g., chaotic curb uses) introduced by disruptive transportation
modes, especially ride-hailing services and the envisioned Shared and Private Au-
tonomous Vehicles (AVs). Even after incorporating these emerging travel modes
into the four-step [28] and activity models [12, 30], the model outputs are con-
strained at TAZ level, which are not very useful to support refined decision
making, such as block level curb spaces allocation. Meanwhile, the ride-hailing
companies, such as Uber and Lyft, are reluctant to release detailed trip data,
due to competition and privacy concerns. Finally, different MPOs tend to model
mobility demand using various data sources (e.g., National Household Travel
Survey [NHTS] vs. local household travel survey) and are calibrated using dif-
ferent base year data, rendering it difficulty to conduct research for cross-city
and region comparisons [19].

Therefore, in this study, we proposed a disaggregated travel demand model-
ing approach that is built upon synthetic populations (developed using multiple
datasets, as described in the next section) and nationally available transporta-
tion network and Point of Interest (PoI) data to fill the current demand model
and data gaps. We validate our modeling outputs by comparing spatiotemporal
distributions of synthesized trips with Origin-Destination (OD) matrices (i.e.,
the product of mode choice). The OD matrices contain the number of estimated
trips for each pair of origin and destination. Given that in most regions, vehicle
travel is the dominant travel mode, our comparison will only focus on vehicle
trips. We obtained OD matrices from three different regions with various urban
forms, travel patterns and current transportation infrastructures, namely Rich-
mond, VA, Seattle, WA, and Atlanta, GA. The adopted travel demand models
differ across these cities, in terms of travel demand data sources, modeling frame-
work, and modelled time periods, as displayed in Table 1.

Table 1: Model Settings for Validation OD Metrics

Model Settings Atlanta, GA Richmond, VA Seattle, WA

Model Framework Activity-based Four-step Four-step

Model Data Source 2011 local survey 2009 NHTS 2014-2015 local survey

Caliberated Base Year 2015 2012 2014

Model Time Periods 5 4 12
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3 The Synthetic Population Approach

A “synthetic population” [2, 11, 16] is a very detailed model of a region, including
the resident population, their daily or weekly activity patterns, their networks
of interaction, and the built environment. The last includes buildings, and also
infrastructures for transportation, power, communication, etc.

Synthetic populations have been used as the basis for multi-agent simulations
in a variety of domains, including computational epidemiology [14], disaster re-
sponse [6], transportation planning [3, 30], and more [24, 27]. They provide high
resolution, high fidelity representations, enabling realistic simulations which can
be used for meaningful policy recommendations [7]. A synthetic population is
generated through a series of steps. We describe the initial steps briefly below,
and present the mobility modeling step (assigning locations to activities) in more
details. Further information is given in a technical report [20].

Generating agents with demographics: We use data from the American
Community Survey [25], which provides demographic distributions for each block-
group and a 5% sample of complete records for a slightly larger area, known as the
Public Use Microdata Sample (PUMS). These are combined using the statistical
technique called Iterative Proportional Fitting (IPF) [13, 8] to generate a joint
distribution over selected demographic variables. We chose age of householder,
household income, and household size as the variables for the IPF step. From
this, we sample the resulting joint distribution and select matching households
from the PUMS data to create the population of synthetic agents.

Assigning activity patterns: Each person p created in the previous
step is assigned an activity sequence α(p) = (ai,p)i where each activity ai,p has
a start time, a duration, and an activity type. For the synthetic population used
in this work, the activity types are from the set

A = {Home, Work, School, Shopping, Religion, Other} . (1)

The activity sequence survey data was taken from the National Household
Travel Survey (NHTS) 2017 [23]. From this, consistent week-long activity se-
quences were constructed and assigned using CART and the Fitted Values Means
method [18].

Assigning locations to activities: This modeling step connects people and
their activities to the set L of residence- and activity locations of the given
region.

The first part of this modeling step constructs the locations. This is done
based on the MS Building Footprint data [21] which we have augmented with a
residential/non-residential classification based on the HERE Premium StreetMap
landuse classifications and extended POI listings [17]. Each non-residence loca-
tion, which we refer to as an activity location, is additionally augmented with a
weight for each non-Home activity reflecting the likelihood of people conducting
that particular activity at the given location. Each household is mapped to a
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residence location. The assignment of residence locations is done for each block-
group. First each possible residence location is assigned one household, to ensure
that there are no residence locations without at least one household. The remain-
ing households are assigned residence locations with probability proportional to
the area of the building footprint.

The second step assigns people’s activities to locations. Abstractly, for each
person p this step constructs a map λp:α(p) −→ L that assigns to each activity
ai,p of p a location ` ∈ L. For the various activity types, this algorithm has the
following sequence of steps:

Using NCES data [22], assign to each residence, the vector-valued ID con-
taining the nearest public school for each grade level;
Construct the normalized county/county work commute flow matrix M ad-
justed with county self-references using ACS commute flow data [1];
For each person p:

assign each activity ai of type Home to the residence location of p;
assign each activity ai of type School to the age-appropriate school
location assigned to their residence location;
select a work location using this 2-step process: (a) randomly select a
target county c′ using the probability distribution Mc where c is the
county of p. (b) For county c′, randomly select a work location ` from
the set of activity locations LA|c′ of c′ using the probability distribution
induced by the locations’ Work weights. Assign all Work activities of p
to `. Thus, each working person has a consistent work location for the
entire period.
if c′ supports Shopping (resp. Other), assign Shopping (resp. Other) ac-
tivities independently at random to the set of activity locations LA|c′ of c′

using the distribution induced by their Shopping (resp. Other) weights.
If c′ has no activity locations supporting Shopping (resp. Other), repeat
this process using the home county c. If c does not support Shopping

(resp. Other), select a county using the probability distribution Mc and
repeat.
if c supports Religion, randomly select a location ` from the set of activ-
ity locations LA|c of c using the distribution induced by their Religion
weights. If c has no activity location supporting Religion, select a
county c′′ using the probability distribution Mc and repeat for c′′.

Additionally, one may construct a person-person contact network using some
form of location co-occupancy model; we do not need that for this work.

In the present work, we extract the collection of activities that take place on a
Tuesday. Travel demand is constructed from the activity schedules by extracting
the locations for successive activities. The start time for the travel is taken to be
the end time of the first activity. If two successive activities take place at the same
location, there is no travel, and this pair is not included in the travel demand
file. Next we describe the comparison between travel demand constructed from
synthetic populations and travel demand data obtained from three US MPOs,
who use traditional models.
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4 Comparison of Results

We validated the synthetic approach by comparing the distributions of synthe-
sized trips with that of OD matrices generated by local travel demand models,
using data from three cities, namely Richmond, VA, Atlanta, GA, and Seat-
tle, WA. These three cities are selected because they tend to have significantly
different urban forms and transit infrastructures. Cities like Richmond and At-
lanta have more urban sprawl and have limited transit systems, while Seattle is
more densely developed and maintains an extensive transit system. Specifically,
we compared the number of generated trips, the distributions of trip departure
times, as well as the spatial distributions of the trip origins and destinations, to
determine if the synthetic trips are representative and can replicate the distri-
butions generated by travel demand models, including both the activity-based
model and the conventional four-step model.

4.1 Trip Counts Comparison

The number of trips generated by each approach for each city is illustrated
in Table 2. For the three study areas, we only compare the trips that both
start and end within the city boundaries. The number of daily trips generated
by four-step travel demand model in Richmond is 370,998. Synthetic approach
generates 401,042 daily trips, which is 8.1% more than that in four-step travel
demand model. Seattle also sees slightly more synthetic trips. Notice that the
Richmond travel demand model is calibrated using 2012 ACS data, while the
Seattle model is calibrated using 2014 ACS data. The accuracy of the projected
2017 OD matrices from these models may vary depending on the quality of local
population and employment forecasting model. The synthetic trips are generated
using 2017 ACS data, which should be considered as more accurate compared
with local forecasts. It is interesting that Atlanta’s activity model generates
significantly more trips than synthetic trips. ARC calibrated and validated the
activity-based model (ABM) using 2011 regional household travel survey and
then forecast travel demand in 2015, while the synthetic trip profiles are gen-
erated using 2017 NHTS data. This is largely because the synthetic population
method assigns some destinations to locations outside the Census blockgroups
that are within the city of Atlanta. These get eliminated when we restrict our
analysis to travel demand in Atlanta. There may be two additional reasons for
the discrepancy in daily trip generation: (1) the trip generation rate for Atlanta
may decrease from 2011 to 2017, and (2) Atlanta NHTS data are not represen-
tative in the 2017 survey. In the concluding section, we address the possibility
of reducing this discrepancy by using other data sets. It is important to note
that the synthetic population model is generated for the entire state, so the total
number of trips taken by the residents of Atlanta are not fully represented here.
In other words, the discrepancy is not due to a systematic bias in the travel
demand, but due to the fact that we are restricting the analysis to a subregion.
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Table 2: Trip Counts Comparison

City # of Trips Obtained
from MPO

# of Synthetic Trips Percentage
Difference

Richmond 370,998 401,042 8.1%

Seattle 1,087,814 1,152,136 5.6%

Atlanta 1,087,418 796,688 -26.7%

4.2 Departure Time Comparison

The number and percentage of trips by the periods of departure time is shown
in Table 3 for each city. Overall, the temporal patterns of trips generated by the
travel demand model and synthetic approach are similar. The share of trips in
each of the time periods by the two methods is close. Thus, we conclude that the
distribution of departure time of synthetic trips matches that in demand models.
Notice that Seattle and Atlanta have more time periods in their travel demand
model. We aggregated the trips into 4 time periods to make the comparison more
intuitive. The MPO for Richmond defined AM period as 6:30 am - 8:30 am and
PM period as 4:30 pm - 6:30 pm. ARC has five periods in the ABM. i.e. early
morning, morning, midday, afternoon, evening. We collapsed early morning and
evening into a night period. Finally, the AM period is 6 am - 10 am and PM
period is 3 pm - 7 pm. Puget Sound Regional Council (PSRC), the MPO for
Seattle, used 12 periods in the demand model. We aligned the periods with the
other two cities as much as possible and end up with AM period between 7 am
- 10 am and PM period between 4 pm - 8 pm. The synthetic population model
gives actual trip start times, so it can be aggregated for any definition of the bins.
In any case, the definition of time periods does not influence the comparison of
models as we compare for each period rather than across periods.

Table 3: Trip Count by Time Period

Period Model Richmond Seattle Atlanta

AM
synthetic 54,996 (14%) 251,371 (22%) 190,226 (24%)
demand model 34,563 (9%) 191,111 (18%) 216,115 (20%)

MD
synthetic 201,063 (50%) 453,975 (39%) 258,049 (32%)
demand model 198,413 (53%) 402,391 (37%) 399,421 (37%)

PM
synthetic 68,554 (17%) 316,430 (27%) 258,057 (32%)
demand model 42,648 (11%) 371,374 (34%) 305,209 (28%)

NT
synthetic 76,429 (19%) 130,360 (11%) 90,356 (11%)
demand model 95,374 (26%) 122,938 (11%) 166,673 (15%)
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4.3 Spatial Distribution Comparison

We validated the spatial distributions of the trips by examining the spatial cor-
relation of buffered trip origins and destinations. Each origin or destination is
a traffic analysis zone (TAZ). There are 219 TAZs in Richmond, 856 TAZs in
Seattle and 829 TAZs in Atlanta. Table 4 shows the computed correlations using
data from two sources by time periods for each city. A buffered TAZ includes
a TAZ and its neighbor TAZs based on queen contiguity criteria, which means
if two TAZs share a vertex or edge, they are neighbors. The reason we do not
directly impute spatial correlation of origins and destinations is that the correla-
tion cannot reflect the actual spatial pattern. For example, the spatial correlation
of destinations could be extremely low even though the synthetic trips end in
areas close to the destinations of trips in demand model. Including neighbor
TAZs when comparing the distribution will mitigate this issue.

Table 4: Spatial Distribution Pearson Correlation of Origins and Destinations

City AM MD PM NT

Correlations of Origins
Richmond 0.85 0.79 0.73 0.81
Seattle 0.86 0.53 0.40 0.54
Atlanta 0.84 0.71 0.65 0.82

Correlations of Destinations
Richmond 0.62 0.77 0.85 0.83
Seattle 0.35 0.58 0.70 0.39
Atlanta 0.58 0.73 0.84 0.86

It can be observed that the spatial correlation of origins peaks in AM and
that of destinations peaks in PM or NT for all of the three cities. In contrast,
they all experience least correlated origins in PM and destinations in AM. The
low correlation is because of different methods of estimating employment in the
two approaches. MPOs estimate employment based on ACS block-level data
while the synthetic approach uses county-level commute flows. The destinations
in AM and origins in PM are mostly the locations of jobs. Therefore, the dif-
ferent estimates lead to low correlations. This indicates one aspect in which the
synthetic population model can be refined.

As shown in Table 4, the destinations in AM in Seattle is the least spatially
correlated in all the cities and periods. Their spatial distribution is illustrated in
Figure 1. Both maps demonstrate that the trips tend to end in commercial zones
such as downtown Seattle in the middle, industrial district in the southeast and
Northgate in the north. Only a small portion of trips travel to Northeast Seattle
and Ballard, where most land use type is residential zones. Notice that the very
west and very east areas in the map are mostly water areas. Therefore, few trips
end there. In general, the spatial distribution of synthetic trips matches that of
trips generated by the MPOs well.
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Fig. 1: Distribution of Destinations in AM in Seattle

5 Conclusion

This study evaluated the synthetic population-based model by comparing it with
the state of the art travel demand models used by Metropolitan Planning Of-
fices in the United States. This was done by comparing the spatial and temporal
distribution of the trips generated by the two approaches. The results indicate
that the trip count estimated by synthetic approach is close to that estimated by
travel demand model. The synthetic approach matches demand models for the
distribution of departure times. The spatial correlations of origins and destina-
tions are mostly high except some specific periods. The low spatial correlation
of origins in PM and destinations in AM reflects the difference of the two mod-
els. The synthetic population model uses ACS county-county commuter flows,
but within counties chooses destinations randomly (though weighted by an esti-
mate of building capacity). Switching to a higher resolution, such as the Census
LODES data product [26], might help with this.

Synthetic population-based models are more flexible compared to four-step
travel demand model. They are less computationally expensive compared to
activity-based model while providing more details on the trips and the travelers.
Besides, this approach is generalizable that most areas can use it to estimate
travel demand. Thus it can be used to do a multiple city study as it enables direct
comparison between cities. Future work can also be to combine it with research
on automated vehicles. For example, the social interaction potential could be
explored with a shared automated vehicle (SAV) system using synthetic trips
as input, e.g., by integrating with simulations of potential shared autonomous
vehicle use [29, 28].
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